传统观点在描述上尽管是承认“渐变”,却讲不出渐变的各个阶段。在理论上则似乎只有“熔体→黏滞塑性体→弹性体”三个物理特性阶段之“突变说”,不符合玻璃物理特性之渐变规律。玻璃退火不能从塑性体开始,此乃常识。那么,只用弹性体一个特性阶段,既找不到玻璃退火的起始黏度,也无法阐明玻璃退火机理。事实已经证明是如此之现状。理论与实际矛盾突出。
(3) 不可逆转的结构差和可逆转的结构差
在退火阶段(<1014.5ρ),玻璃经结构调整减小了结构差(长度差,密度差和热膨胀系数差),趋向于密实化。玻璃的各部在经历的时间, (弹塑性体)、 (弹塑性初态)、 (亚刚体)和 (三者之和)上说,是有差别的。 ,尤其是 较大的单位,相应的密度高,长度短和热膨胀率低。与 , 较小的部位之间产生了结构差,冷至刚体被固定而不可逆转,形成了永久应力即是结构应力,绝无第二种应力可言。
在后续退火阶段(≥1014.5ρ),玻璃已呈刚体,位移终止,结构调整停顿,密实化过程结束,是单纯的应力与应变成正比的关系。温差只产生可逆转的结构差,由此形成了暂时应力。
(4) 永久应力成因
应力松弛只是表征“位移和微分变形”活度状况的宏观现象,不能把现象当作永久应力成因之本质。玻璃具有极高的黏度和热的不良导体特性,温降时,各部之间存在着温差,也必然会有结构差,冷至刚体被固定而不可逆转导致了永久应力。
a、b和c三个实时变量决定了Δ值的演绎。玻璃冷至弹塑性体阶段Δ=0时,热应力测不出来,似乎结构差已经消失。其实这只是一种假象。正确的表达式是a-b=c,c是被隐含着的结构差。冷至刚体Δ被固定而不可逆转导致了永久应力。
应力松驰有无穷个结果(b,c),哪个结果都不是导致永久应力的、不可逆转的结构差(Δ)。所以,“玻璃内永久应力产生的直接原因是在退火温度区域内应力松驰的结果”[4],是一个错误的结论。该结论所指的是狭义的应力松驰现象,在~1013ρ时已经终止。而永久应力是冷至1014.5ρ才形成的。
(5) A是重要退火区
不作任何的界定解释就称:“A是预退火区,B是重要退火区”。这在学术上是不允许的。
似退火,又非退火的“预退火区”是一个错误的称谓。理论和生产实际都能证明,“不存在所谓的预退火区。A是重要退火区,B只是继续退火阶段与后续退火阶段的连接区”。
从“六个物理特性阶段、两个退火阶段和四种退火状态”,得到了浮法玻璃退火窑设计的技术路线,要点有如下四条:
(1) 以A区为“重心”
玻璃带在A区(600~550 ℃,1010.82~1012.78ρ,ΔtA=50 ℃),大部分处于弹塑性体阶段(1010.82~1012ρ,600~568.29 ℃,Δta=31.71 ℃),小部分处于弹性体初态阶段(1012~1012.78ρ,568.29~550 ℃,Δta2=18.29℃)。最佳退火状态占了100%,次佳退火状态占了79.49%,二者占了退火阶段温阶的59.56% Δt1(Δt1=600-516.05=83.95 ℃);在B区(550~480 ℃,1012.18~1016.83ρ,ΔtB=70 ℃),跨越三个特性阶段:弹性体初态瞬息而过(1012.78~1013ρ,550~545.28 ℃,Δtb1=4.72 ℃),刚亚体走了全过程(1013~1014.5ρ,545.28~516.05 ℃,Δtb2=29.23 ℃),刚体历经了一段较长的温阶(1014.5~1016.83ρ,516.05~480 ℃,Δtb3=36.05 ℃)。次佳退火状态占了20.51%,最次退火状态占了100%,二者占了退火阶段温阶的40.44% Δt1,并且,是对处于该温阶的低温段。后续退火状态占了B区温阶的51.50% ΔtB。
由此可以断定:“A是重要退火区,B是继续退火阶段与后续退火阶段的连接区”。那么,玻璃带在各区的冷却速度Gn(℃/min),必然以GA为基准参数。并且,应该是GA≤GB才正确合理。所以,玻璃带在A、B和C区的冷却速度必然是:“慢?慢?快”的关系。
(2) Gn与GA关系
除两个过渡区之外,尽管Gn有较为宽广的调节范围。不过,我们应该找到Gn对GA的最佳比例关系,以获得能充分发挥各区功能之最佳的区长Ln,最终确定退火窑的总长度L。
利用新的、正确的玻璃退火理论和生产经验,以及实验室和半工业性试验(物理的和数字的模拟试验),作热工测定来检验和校正试验的边界条件,使实验结果逼近于生产实际。由此可推得可靠的和精确的计算方法,并完成计算机的编程。
在此之前,我们仍然可以借用CNUD公司的经验公式,初算LA、B,再使用相关的关系式来确定LA,分割LA、B并求出Ln和L值:
h0=Δ÷[17.8836a2](CNUD) (3)
=ΔtA、B÷h0 (4)
LAB=υ?τ (5)
LA=0.4LA、B(再按GA≤≥GB作调整而确定) (6)
GB≥GA (二者相近) (7)
GC≤(2~2.5)GA (8)
GR≤(2.5~3)GA (9)
GF≤(2~2.5)GA (10)
ΔtF<ΔtR (二者相 |